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What Can One Learn About Self-Organized
Criticality from Dynamical Systems Theory?
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We develop a dynamical system approach for the Zhang model of self-organized
criticality, for which the dynamics can be described either in terms of iterated
function systems or as a piecewise hyperbolic dynamical system of skew-product
type. In this setting we describe the SOC attractor, and discuss its fractal struc-
ture. We show how the Lyapunov exponents, the Haussdorf dimensions, and
the system size are related to the probability distribution of the avalanche size
via the Ledrappier�Young formula.
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I. INTRODUCTION

Within the last 10 years the notion of Self-Organized Criticality (SOC)
became a new paradigm for the explanation of a huge variety of phenomena
in nature and social sciences. It's origin lies in the attempt to explain the
widespread appearance of power-law like statistics for characteristic events
in a multitude of examples like the distribution of the size of earthquakes,
1�f-noise, amplitudes of solar flares, species extinction... to name only a
very few cases.(1�3, 19) As a result, an important literature in physics has
been devoted to the study of systems exhibiting SOC.

The complexity of the dynamics in the above mentioned systems is
mainly due to the presence of long-range spatial and time correlations,
leading to non trivial effects like anomalous diffusion. At stationarity, the
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average incoming flux of external perturbations is simply compensated by
the average outgoing flux that can leave the system at the boundary, or by
dissipation in the bulk. Therefore, there is a constant flux through the
system, leading to a nonequilibrium situation. What is remarkable in this
stationary state, refered to as the SOC state, is that the distribution of
avalanches appears to follow a power law, namely there is scale invariance
reminiscent of thermodynamic systems at the critical point. This is certainly
one central reason why SOC has attracted the physicist community: these
systems (apparently) reach spontaneously a critical state without any fine
tuning of some control parameter.

Several models have been proposed to mimic these mechanisms like
the sandpile model, (1, 2) the abelian sandpile(12) or the continuous energy
model.(30) Numerical simulations on one hand, and theoretical approaches
on the other hand have lead to a good description of SOC, in particular
with respect to the computation of critical exponents that are believed to
characterize the universality class the model belongs to, as they do in
second order phase transitions.

However, to our knowledge, no serious attempt has been made to
study SOC from a dynamical system point of view (except refs. 7 and 11).
It is however a natural approach to try to access the macroscopic
behaviour of large sized systems from the microscopic dynamical evolution.
The macroscopic behaviour at stationarity is characterized by a probability
measure one has to extract from the microscopic evolution. One is seeking
a ``good'' measure from a physical point of view, namely a Sinai�Bowen�
Ruelle measure (SBR): in the SOC model we discuss later this measure
maximizes the entropy.

In this paper we develop a dynamical system description for a certain
class of SOC models (like the Zhang model(30)), for which the whole SOC
dynamics can either be described in terms of Iterated Function Systems, or
as a piecewise hyperbolic dynamical system of skew-product type where
one coordinate encodes the sequence of activations. Several deep results
from the theory of hyperbolic dynamical systems can then be used, having
interesting implications on the SOC dynamics, provided one makes some
natural assumption (like ergodicity) which will be partially justified in this
paper.

With this approach we give a precise definition of the SOC attractor
discussed by some people.(1, 2) We show that it has a fractal structure for
low values of the critical energy. The main objects for which our point of
view is appropriate is certainly the structure of the asymptotic energy dis-
tribution or, in other words, the structure of the natural invariant measure.
We show in particular how the Lyapunov exponents, the geometric struc-
ture of the support of the invariant measure (Haussdorf dimensions), and
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the system size are related to the probability distribution of the avalanche
size, via the Ledrappier�Young formula.(20)

II. THE DYNAMICAL STRUCTURE OF THE ZHANG MODEL

A. Description of the Model

In this paper we deal with the Zhang model on a d dimensional, con-
nected subgraph 4/Zd, with nearest neighbours edges, though the for-
malism we develop holds for more general graphs. Let �4 be the boundary
of 4, namely the set of points in Zd�4 at distance 1 from 4 and let N be
the cardinality of 4. Each site i # 4 is characterized by its ``energy'' Xi ,
which is a non-negative real number. The ``state'' of the network is com-
pletely defined by the configuration of energies X=[Xi ]i # 4 . Let Ec be a
real, positive number, called the critical energy, and M=[0, Ec[

N. Let
d1, 2(X, Y) be the L1 (resp. L2) distance on M. A configuration X is ``stable''
iff X # M and ``unstable'' or ``overcritical'' otherwise. If X is stable then we
choose a site i at random with probability 1�N and add to it energy $X. As
far as the physically relevant parameter is the local rigidity Ec �$X, (23) one
can investigate the cases where Ec varies, and where $X is a constant. We
will therefore assume that $X=1 without loss of generality. If a site i is
overcritical (Xi�Ec), it loses a part of its energy in equal parts to its 2d
neighbours. Namely, we fix a parameter = # [0, 1[ such that, after relaxa-
tion of the site i, the remaining energy of i is =Xi , while the 2d neighbours
receive the energy ((1&=) Xi)�2d. Note that in the original Zhang
model, (30) = was taken to be zero. We define here a straightforward exten-
sion. Note however that in this paper = will be considered as a small
parameter compared to Ec .

If several nodes are simultaneously overcritical, the local distribution
rules are additively superposed, i.e., the time evolution of the system is syn-
chronous. The sites of �4 have always zero energy (dissipation at the boun-
daries). The succession of updating leading an unstable configuration to a
stable one is called an avalanche. Because of the dissipation at the boun-
daries, all avalanches are finite. The structure of an avalanche can be
encoded by the sequence of overcritical sites A=[Ai ]0�i where A0=[a],
the activated site, and Ai=[ j # 4 | Xj�Ec in the ith step of avalanche],
i>0.

The addition of energy is adiabatic. When an avalanche occurs, one
waits until it stops before adding a new energy quantum. Further activa-
tions eventually generate a new avalanche, but, because of the adiabatic
rule, each new avalanche starts from only one overcritical site.
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Since the avalanche after activation of site a maps overcritical to stable
configurations one can view this process as a mapping from M � M where
one includes the process of activation of site a. We hence associate a map
Ta with the activation at vertex a. This map usually has singularities and
therefore different domains of continuity denoted below by M k

a where k
runs through a finite set depending on a. Call T k

a=Ta |Ma
k . The main object

of this paper is the study of the properties of the family of mappings [T k
a]

and to link these properties to the asymptotic behaviour.

B. Piecewise Affine Mappings

1. Structure of the Piecewise Affine Mappings. One can
easily write the conditions on the stable energy configurations insuring that
the avalanche A=[Ai ]0�i occurs. This defines a convex domain4 in Mk

a

in M. The Mk
a 's are the domains of continuity of Ta , and they constitute,

for each a, a partition of M. There is therefore a one to one correspon-
dence between an avalanche and a map T k

a . The energy distributions rules
of Zhang model implies that:

T k
a .X=Lk

a . (X+ea)=Lk
a .X+Lk

a .ea , X # Mk
a (1)

where the linear mapping Lk
a characterizes the redistribution of energies on

each site after the avalanche. The column i of Lk
a 's contains the ratios of

energy given by the site j to the other sites after the corresponding
avalanche. Alternatively, the entries of the row i correspond to the energy
received by i from the others sites (i included). ea being the canonical basis
vector of RN in the direction corresponding to the activation at site a, the
constant vector Lk

a .ea corresponds to the redistribution of the additional
energy $X=1 on each site, after the avalanche. In the case where no
relaxation occurs the corresponding map is just a shift along the a axis.
A way to build Lk

a is to construct it step by step, by a left product of
elementary matrices giving the redistribution of energy from one step in the
avalanche to the successive step. The composition of these matrices is
determined by the avalanche profile.

Let Sk
a=�Mk

a . Then Sa=�k Sk
a is the set of singularities for the

transformation Ta . The sets Sk
a are unions of segments of hyperplanes

in RN.

2. Protection Effect. The original Zhang model contains a
pathology. Due to the reset to zero of an overcritical site after relaxation
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(==0), linear dependencies among the sites (more precisely, direction of
RN associated to these sites) are created along the avalanche. This implies
the existence of a non trivial kernel. Thus each Lk

a 's is a projection onto a
subspace of RN, whose dimension increases with the number of involved
sites in the avalanches. The one step matrices have a number of zero eigen-
values given by the number of sites set to zero at the corresponding time
step. Multiplying these matrices gives raise to the kernel of Lk

a . We denote
the subspace generated by zero eigenvalues E0(a, k). Note that, in general,
Ker Lk

a/E0(a, k). Clearly, the existence of a nontrivial kernel is the source
of several mathematical complications when studying the dynamics of
Zhang model. It is a very particular feature of the ==0 model. It makes
however the global geometry of the attractor quite interesting (see Fig. 1).

3. Contraction. Each mapping Lk
a has only eigenvalues of

modulus lower or equal than 1. Indeed, by definition, the sites of the boun-
daries of the avalanche receive energy without relaxation. This implies that,
by eventually permuting the basis vectors, the linear map L can be written
as:

I V } } } V 0

L=_0 _ & 0& (2)

0 V } } } V I

where I is the identity matrix and where the V's can be zero or not. They
correspond to the fraction of energy received by the sites which have not
relaxed. Therefore, the vectors corresponding to sites not relaxing are
eigenvectors of L with eigenvalue one. We denote the corresponding
(neutral) subspace by En(a, k).

On the other hand, the inner block in (2) corresponds to the sites
which have relaxed. The energy conservation implies that the sum on each
column of the block is strictly lower than one (some part of the energy has
gone outside the block, to the sites on the boundary of the avalanche).
By usual arguments on positive matrices it follows that the eigenvalues are
strictly lower than one in the block.(15) Note that, for ==0, this block con-
tains also the subspace E0(a, k). Therefore, the subspace of relaxing sites is
decomposed into two subspaces: E0(a, k) and E&(a, k), where E&(a, k)
denotes the subspace associated to the eigenvalues 0<|*i |<1.

Hence with each mapping Lk
a we associate the following decomposi-

tion:

E&(a, k)�En(a, k)�E0(a, k)=RN (3)
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C. Composed Mapping

1. Composition of Affine Mappings. Extended Dynamical
System. The activation dynamics can be represented by the left Bernoulli
shift _ over 7+

4 , the set of right infinite sequence a=[a1 ,..., ak ,...], ak # 4,
where _a=a2a3 ... . Namely, an is the n th activated site in the activation
sequence a. We denote by [a] the set of sequences whose first digit is a.

The combined effect of the activation and relaxation process is than
described by a dynamical system of skew-product type T: 0 � 0 such
that:

T(X� ) =def (_a, Ta1
(X)); X� =def (a, X)

where 0=7+
4 _M is called the extended phase space.

Let DTX� be the tangent map of T at X� . (When speaking about dif-
ferentials of T we usually think of 74 represented by a smooth system
z � |4| } z mod 1).

The singularity set of T is:

S= .
a # 4

[a]_Sa (4)

We define a distance on 0 by d0(X� , Y� )=d74
+(a, a$)+dM (X, Y), where

X� =(a, X), Y� =(a$, Y). We denote the two projections on the first and
second coordinate by ?u(a, X)=a, and ?s(a, X)=X. The superscript u, s
means respectively unstable and stable and will be explained below. We
have a natural partition of 0, P=[Pk

a=[a]_Mk
a]. Note that P is a

generating partition for (T, 0) in the topological sense, that is, the
diameter of the elements of �i T&iP goes to zero. Furthermore the M k

a are
convex.

2. Kernel of the Infinite Product Map. For ==0 the kernel of
the map Tt can increase with t, projecting RN onto spaces of lower and
lower dimensions. Therefore, after a certain, finite time, n(X� ), X� is projected
onto the effective lower dimensional subspace,5, 6

Es(X� ) =def [v # [0]_RN; \t�0, &DT t
X� .v&>0] (5)
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It is somehow the reference space with respect to X� , because,
asymptotically, the dynamics of vectors in RN under DTX� reduces to the
dynamics of vectors initially in Es(X� ). We get therefore a splitting of the
projection on M of the tangent space at X� as:

RN=Es(X� )�K(X� ) (6)

where K(X� ) is the kernel of the product map. This splitting will be refined
further below by using the Oseledec space decomposition.

3. Local Contraction. One easy shows that for any finite connected
4 and arbitrary activation sequence a all sites become overcritical infinitely
often. Assume the opposite. Then, there exists a site which is overcritical
only a finite number of times along the infinite sequence a but has a
neighbour site which relaxes infinitely often. The energy coming from the
overcritical neighbour site is larger than ((1&=) Ec)�2d by definition. This
implies that all neighbours relax also an infinite number of times during the
whole sequence. Hence we get a contradiction. It follows that there exists
a time {#{(4, Ec , =)<� such that, \X� , after at most { time steps each site
has been at least once overcritical. By looking at the product map DT{

X�

this implies that all eigenvalues are different from one. This is straight-
forward since the sum of entries on each column of the composed map on
M is strictly lower than one (and is bounded away from 1). Therefore there
is a positive constant C#C(4, Ec , =) s.t.:

&?sDT{
X� &1= sup

&V&1=1

&?sDT{
X� V&1<C<1 (7)

This implies that the map T{ acts as local contraction in all directions
in the space M, along the trajectory of any point X� . This has in particular.
the following consequence. The distance of two points X� , Y� whose trajec-
tory belong to the same domain of continuity eventually goes to zero if the
trajectories lie in the same domains of continuity along the whole activa-
tion sequence.

4. Hyperbolic Structure and Lyapunov Exponents. Assume
that almost every point is regular, namely the map T is differentiable
along all points of the trajectory (note that as long as we work in the
tangent spaces this assumption is not necessary since the involved mapping
are all well defined at �Pi . Only for the construction of the local induced
stable manifolds in M one has to take care of regularity). Then, one can
decompose the (effective) tangent space at a.e. point X� # 0 into a con-
tracting subspace Es(X� ) and an expanding one Eu(X� ), s.t.:
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1. \X� , Es(X� )�Eu(X� )=RN+1&dim(K(X� )).

2. \X� , _*<1, {<�, s.t. &DT{
X&Es(X� )�*. Furthermore &DTX&E u(X� )

=N=|4|.

3. T(Es(X� ))=Es(T(X� )); T(Eu(X� ))=Eu(T(X� ))

Furthermore Es(X� ) can be decomposed into a sequence of sub-
spaces, (14, 24, 29) 7

Es(X� )=E1(X� )#E2(X� )# } } } #El (X� ) (8)

such that if v # Ei (X� )"Ei+1(X� ) the average contraction of v is given by the
Lyapunov exponent:

*i (X� )= lim
n � �

1
n

log &DTn
X� (v)&2 (9)

From property (7) there are no zero Lyapunov exponents (note however
that some exponents go to zero as Ec tends to infinity).

If the dynamics is ergodic the Lyapunov exponents are almost-surely
constants and the same holds for dim Ei . Corresponding to the shift action
there is a positive Lyapunov exponent, which is trivially log(N ). The
Lyapunov exponents are directly related to the geometrical structure of the
support of the invariant measure. In the Zhang model the negative
exponents 0>*1�*2� } } } �*N are physically related to the transport of
energy and the dissipation rate at the boundary.(9) In particular, we show
below that there is a natural relation linking these exponents to the
avalanche size distribution. The positive Lyapunov exponent *0=log N
corresponds to the entropy production coming from the activation
dynamics.

The average exponential volume contraction rate on Es(X� ) is given by
the sum:

:
N

i=1

*i (10)

while the average exponential variation rate of the volume in the extended
phase space is log N+�N

i=1 *i .
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For regular X� let

Ws
=(X� )=[Y� : d(X� , Y� )�=, \i�0,

Ti X� and T iY� are in the same partition element of P]

be the = local stable manifold. Clearly one has on Ws
= uniform exponential

contraction.
The global stable manifold Ws(X� ) is obtained by

.
i�0

T&i (Ws
=(X� ))

Finally let Wloc(X� ) be the largest connected component of Ws containing X� .
Since the system is of skew product type one has a trivial unstable manifold
being in the case of representing the shift as z � z } |4| mod 1 the whole
interval [0, 1]. Note that Ws

=(X� ) may not exist if _[ni ] s.t. d(Tni (X� ), S)
<e&niC where C>0 is some constant larger than &*. The set of
points with this property has measure zero unless the invariant measure
concentrates on S. This aspect will be described in more detail in ref. 8.
We make the following conjecture:

Conjecture 1. There exists a E� c(N ), such that, for Lebesgue almost-
every Ec<E� c(N ) there exists an n(Ec , N ) and a & such that \t>n(Ec , N ):

d(Tt(0), S)>&>0

This implies that after a finite time the dynamics stays away from the
singularity set. This assumption is sufficient for the existence of local stable
manifolds, but it will have several other important implications. We expect
Conjecture 1 to be true for E� c sufficiently small since for E� c<<1 the con-
traction dominates the expansion in the extended phase space. The
invariant set has the structure of a totally disconnected Cantor set with
large gaps. Furthermore the local structure of this invariant set is constant
for open sets of Ec values (see Section 6), but the singularity set is varying
continuously in Ec (except for a countable set), one can find open domains
of Ec values where S stays away from the invariant set.

The singularity set has nevertheless the following effect on the
dynamics. Take an '-ball of initial conditions (in M), and fix an activation
sequence. For ' large enough the image of the ball under some iterate of
T is cut by the singularity set. This means that the points separated by the
singularity set will not evolve under the same sequence of mappings. For
large size systems this can cause on M a kind of expansion effect (for fixed
typical activation sequence) on a mesoscopic scale.
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5. Symbolic Dynamics. Symbolic dynamics is a very useful tool
for the investigation of the orbit structure of dynamical systems. To this
aim, one fixes a partition P of the phase space and associates to each point
the sequence of partition elements visited by the orbit of a point. To make
symbolic dynamics useful one wants this correspondence essentially to be
unique (that is up to sets of measure zero). Furthermore to handle the sym-
bolic dynamics it is essential to have an explicit characterization of the
legal (that is by orbits generated) set of symbolic sequences. The perhaps
most prominent example of such an explicit description are symbolic
systems defined by a Markov transition graph called Subshift Of Finite
Type (SFT). A classical result in hyperbolic dynamics says that uniform
hyperbolic systems are always conjugated to SFT.(10, 25, 27) The specific par-
titions giving rise to such coding are called Markov Partitions.

In the Zhang model one can encode the possible transitions between
avalanches in a transition graph with respect to the canonical partition
P=[Pk

a] from Section 5. Namely, we draw an arrow from Pk
a to P l

b if and
only if T(Pk

a) & P l
b{<. We denote by 7+

P the set of admissible infinite
sequences w.r. to the partition P.

Clearly, points on W s
loc(X� ) form an equivalence class for the symbolic

coding induced by P. Note that the transition graph is a priori Markov
only for special choices of Ec .

When the invariant set is bounded away from the singularity set one
can refine the partition [Pk

a] to make it Markov (this is certainly not a
necessary assumption to get a Markov transition graph). Namely, there is
an m s.t. the partition �m

i=1 T&i (TmP) is a Markov partition. We label
the affine mappings corresponding to the Markov partition elements by Fi .
Note that several Fi can usually correspond to the same map T k

a .
Let us give an example. In the case Ec # [1, 2], ==0, in one dimen-

sion, the piecewise continuous mapping applied is uniquely determined by
the position of the zero site. Indeed, after a sufficiently long sequence all
sites have energy Xi�Ec �2 but eventually one with a zero value. Since a
site with value zero is the only possible stopping site for an avalanche
besides the boundary the avalanche is uniquely determined by the position
of the activated site and of the zero. This case is however the simplest,
because there is no need to cut further the Pk

a 's in order to get a SFT. For
Ec>2 things are more complicated, due to the presence of sites with
integer values 1 } } } [Ec&1] which may stop an avalanche, according to the
amount of energy they receive.

As already said we expect the above mentioned property of being dis-
joint from the singularities to hold for a.e. Ec value less than some E� c(N ).
This implies that the system is a SFT. For ==0, d=1 there is another
dense set of Ec values for which one can show that the system is a SFT.
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Proposition 1. For ==0, d=1 and Ec=n�(2d ) p for any n, p # N*
the system is conjugate to a SFT.

Note that the elementary operations on each avalanche and each node
i are of the form Xi � Xi+�j Xj �2 for some j and a check wether Xi is
larger or less than Ec . If Ec is of the above form it is a finite digit number
(eventually zero) in base 2. It follows that for each point X # M one has to
know only a uniformely bounded, finite number of digits in base 2 to
decide in which set Mk

a X is. The same holds for the legal transitions
between avalanches domains, that is, there is a finite number of forbidden
strings in base 2 |4| coding the whole system, hence it is a SFT. K

6. Macroscopic State and SBR Measures. The addition of
energy on one hand, and the dissipation of exceeding energy at the boun-
daries, on the other hand, drives gradually the system towards a stationary
state where there is a constant energy flux through the system. As far as
our representation accounts for activation dynamics on one hand and
transport-dissipation (avalanche) on the other hand, the full informations
about the macroscopic behaviour of the system at stationarity is contained
in the invariant measures8 of our dynamical system. Since 0 has a product
structure one has canonical measures +u (induced measure on the unstable
direction) and +s (induced measure on M). For simplicity we will assume
that + is a Bernoulli measure, namely that the sites are chosen independently
with fixed rates. Once we have fixed the distribution of activation, we are
interested on the possible +s measures. Of special physical importance are
the measures obtained by iterating the Lebesgue measure +L on M, that is
limn � �(1�n) �n&1

i=0 Ti (+u_+L). We call this measure conditional SRB
with respect to +u.

It is common in the SOC litterature to assume ergodicity. In our set-
ting the physically relevant ergodic property is equivalent to the following
conjecture.

Conjecture 2. For any Ec , 4, =, and given +u the corresponding
conditional SBR measure is unique.

This implies in particular the almost-sure equality between the ensemble
average and the time average for typical energy configurations. We give
some arguments to support this assumption at least for certain Ec values.
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If the probability of activation of any site in non zero then there exists a
periodic point X� with period p such that

+u([?u(X� ), ?u(T(X� )),..., ?u(T p&1(X� ))])>0 (11)

where [?u(X� ), ?u(T(X� )),..., ?u(T p&1(X� ))] is a cylinder set, i.e. this is the
set of infinite sequences in 7+

4 which coincide with the activation sequence
of X� on the p first symbols. Assume that the periodic orbit admits a stable
manifold such that

.
i

Ws(Ti (X� ))=M (12)

If the periodic point does not lie on S one can take a small neighbourhood
U=(X� ). Otherwise, as far as the singularity set is moving with Ec while the
limit cycle does not change on open domains of Ec (the maps remain the
same) one can change Ec by an arbitrary small value in order to make the
limit cycle disjoint from S. Due to (11), a generic sequence a admits arbitrary
long segments with repeated words ?u(X� ), ?u(T(X� )),..., ?u(T p&1(X� )).
Therefore, from (12), almost every points visits U=(X� ) infinitely often for
any =>0 sufficiently small. By the hyperbolic structure and some moderate
assumptions on the distribution of the size of Ws

loc(X� ) one can then form
a Hopf chain9 between iterates of a.e. points Z� , Y� when they visit U=(X� ).
By standard arguments from ergodic theory concerning the equality of
forward and backward averages one can then prove that a.e. pair of points
on the invariant set belongs to the same ergodic component. In general, it
does not seem easy to give explicit examples of sequences of avalanches
satisfying the above conditions. The crucial point here is to show (12). But
perhaps it should be possible to weaken the above conditions substantially.

For d=1, Ec>1, one can check it by using the following argument.
For Ec>1, starting from any stable configuration, one can add energy to
the low energy sites (Ei<Ec&1) in order to get a configuration where all
sites have energy Ec&1<Ei<Ec . Activating any site in this configuration
generates a unique ``maximal'' avalanche where all sites become overcriti-
cal. This avalanche is recurrent10 and there exists a periodic orbit satisfying
(12). For d>1 the number of reflexions of the front on the boundaries can
vary and there are several types of ``maximal'' avalanches which makes the
argument break. One can however still apply it on a diamond shaped lat-
tice with L odd (N=L2), because, by activating periodically in the middle
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site, one has essentially the same situation as for the one dimensional chain.
For Ec small, especially for Ec<1 the avalanche patterns are much more
complicated and the above argument breaks down.

Note that in the case where we have a Markov graph, the ergodic
property can in principle be directly checked on the Markov transition
graph defined in the previous section. Namely, if the Markov transition
graph is asymptoticaly irreducible and aperiodic, (unique) ergodicity
follows from usual results on Markov chains.

We proceed in discussing some aspects of the dependence of + on Ec

for fixed 4.

Proposition 2. +s is singular for all Ec sufficiently small.

Proof. This follows easily since for Ec<<1 one can make the L1

norm of all avalanche map arbitrary small since the avalanche has to
``reflect'' many times on each boundary node, hence every node has con-
tributed to the dissipation. Since the expansion is constant it follows that
det(DT)<1 hence all measures are singular. K

Proposition 3. +s is atomic for the chain and Ec # [(1+=)�(1&=),
2�(1&=)].

This is proved in Section III.A.3. Furthermore, we conjecture the
following:

Conjecture 3. The Haussdorf dimension of +s is piecewise con-
tinuous and monotonously increasing on the domains of continuity for
Ec<<1.

This is supported by the following argument. On open intervals Ii of
Ec the structure of the mappings T k

a does not change but the domains of
continuity Mk

a do. Furthermore for Ec decreasing the probabilities for
avalanches with higher contraction should increase which should force the
Haussdorf dimension to increase monotonously with Ec on each Ii .

We now discuss the connection between the invariant measure and the
SOC state. It is possible to extract from + the probability distribution of all
observables usually considered in the study of SOC. The traditionaly used
observables are: the duration t (number of iteration steps inside one
avalanche); the size s (total number of relaxing sites counted with multi-
plicity), and the area a (number of distinct relaxing sites). Fix now an
observable, say s. Let Ks be the set of mappings T k

a with avalanche size s
and let Qs be the union of its domains Mk

a . Let PN(s) be the probability
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to have an avalanche of size s for a lattice of size N in the stationary limit.
One has clearly:

PN(s)=+s(Qs) (13)

7. Ledrappier�Young Formula. This formula plays a key role in
relating the probability of avalanche size to the average contraction rate
(sum of Lyapunov exponents). It establishes a kind of conservation law
relating the Lyapunov exponents, some version of Haussdorf dimension
and the Kolmogorov�Sinai entropy.

One can refine the foliation into a stable and unstable manifold by
splitting the manifolds into sub-manifolds Ws

i(X� ) (resp. Wu
i (X� )) such that

the contraction (resp. the expansion) on Ws
i(X� ) (resp. Wu

i (X� )) is governed
by the Lyapunov exponent *i . Let $i be the local Haussdorf dimension of
the measure + projected on Wr

i(X� ) (where r stands for s, u), namely:

$i=lim
= � 0

log +(Bi (X� , =))
log =

(14)

where Bi (X� , =)) is an =-ball around X� in Wr
i(X� ). Then _ i=$ i&$ i+1 ,

i=1 } } } N&1 is the transverse dimension of the measure + on
Wr

i(X� )"W r
i+1(X� ). It is constant for + almost-every X� if + is ergodic. The

unstable foliation being one dimensional in our context, the Haussdorf
dimension of the measure Wu(X� ) is $0 . It is equal to one for the uniform
activation measure.

Let h+ be the Kolmogorov�Sinai entropy of + and *+
i the positive

Lyapunov exponents. The Ledrappier�Young formula is ref. 20 (for ergodic
measures):

h+=:
i

*+
i _i (15)

where the sum is taken over the positive Lyapunov exponents. It expresses
in particular that without any absolute continuity of any equation relating
entropy and positive Lyapunov exponents must involve some notion of
fractional dimension. In our case, it reduces to:

h+=log N$0 (16)

From now on we will assume that +u=+L (uniform activation). In this
case $0=1.
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When the dynamics is invertible, this formula, applied to the inverted
system, gives the following equality in the Zhang model:

:
N

i=1

*i_i=&log N (17)

where the sum is now taken over the negative Lyapunov exponents.
However, one has to assume that the dynamics is (+ almost-surely)

invertible. That means physically that, at stationarity, the probability that
two avalanches, starting from two different configurations, end on the same
configuration of energies is zero. Like conjecture 1 we expect this property
to hold only for small Ec values, where the invariant set is a Cantor set but
to fail generically for large Ec values.

We have the following conjecture:

Conjecture 4. For Ec sufficiently small, there exists a n(Ec , N, d )
such that \t>n(Ec , N ):

+(Tt(Pk
i ) & Tt(P l

j))=0, \Pk
i {P l

j

Note that one can weaken this assumption by requiring that there are,
on the attractor, less than N preimages and still get a nontrivial relation to
Lyapunov exponents. One can still write down a Ledrappier�Young for-
mula for non invertible systems by making the system invertible(26) by
coding the backward iteration tree in the same way as we did with the
activation sequences, hence introducing an additional variable on which
the forward dynamics contracts. Let JN(X� ) be the number of preimages of
X� and JN=� JN(X� ) d+(X� ) the averaged number then:

& :
N

i=1

*i _i=log N&log JN (18)

III. DYNAMICS AND SOC

A. The Zhang Model as an Iterated Function System

If the system is conjugate to a subshift of finite type, the dynamics of
the Zhang model is essentially equivalent to a graph probabilistic Iterated
Function System (IFS), (5, 16) namely, a set of quasi-contractions Fi ran-
domly composed along a Markov graph admitting a unique invariant
measure +*. Note that IFS are usually defined for true contractions,
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however, in our case, any finite composition along the graph is a contrac-
tion. In this case, the classical theory of graph directed Iterated Functions
Systems applies and allows one to obtain interesting results with respect to
the geometrical structure of the invariant set.

1. The Zhang Model Attractor. The IFS determines a unique
non-empty compact set A, called the attractor of the IFS, satisfying:

A=F(A) =def
.
RN

i=1

F i (A) (19)

This set is usually a fractal.
Let H(M) be the set of compact subsets in M. Define a distance on

H(M), called the Haussdorf metric by:

$(A, B)=sup[d(a, B), d(b, A), a # A, b # B] (20)

where A, B are non empty closed bounded subsets of M, and d(x, A)=
inf[d(x, a), a # A]. A is an attractor of the IFS in sense that it satisfies the
following property:(18)

\B # H(M), Fn(B) � A

in the Haussdorf metric when n � �. Furthermore, if B # H(M) is such,
that for all i, F i (B)/B then:

A= ,
�

n=0

Fn(B)

Therefore, the asymptotics dynamics of the Zhang model lives onto an
attractor, further on denoted by A, whose fractal geometry is linked to the
critical behaviour at stationarity. Note however, that, despite one might
expect from the presence of dissipation the existence of an attractor with a
fractal structure in general SOC models, this is not the case because the
distribution of energy has to be of type like in the Zhang model to get local
contraction effects. We give now two simple examples of attractors which
can be constructed ``by hand.''

2. One-Dimensional Chain with Ec=1, N=3, ==0. For
N=3, each configuration X is a triplet [X1 , X2 , X3]. First note that only
the mappings whose image intersect the cube [Ec �2, Ec[

3 are relevant for
the asymptotic dynamics. Moreover, for Ec�1 each activation generates
an avalanche, and the resulting configuration always contains a site with
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zero energy. This is an effect of projection onto the complementary set of
the kernel of the product mapping, discussed in Section C2.

The mappings (rather, their projection onto the faces of M) are
respectively:

F1=_
1
2
1
4

0
1
2& } _X

Y&+_
1
4
1
8& , F2=_

1
2
1
4

0
1
2& } _X

Y&+_
1
2
1
4&

F3=_
1
2
1
2

1
4
1
4& } _X

Y&+_
1
4
1
4&

F4=_
1
2

0
0
1& } _X

Y &+_
1
2

1& , F5=_
1
4
1
4

1
4
1
4& } _X

Y&+_
1
4
1
4&

F6=_1
0

0
1
2& } _X

Y&+_
1
2

1&
F7=_

1
4
1
4

1
2
1
2& } _X

Y &+_
1
4
1
4& , F8=_

1
2

0

1
4
1
2& } _X

Y &+_
1
4
1
2&

F9=_
1
2

0

1
4
1
2& } _X

Y&+_
1
8
1
4&

The Markov transition graph can be easily computed. Each legal transition
occurs with probability 1

3 (activation of sites 1, 2, 3). To obtain the
invariant set of the IFS, one must first notice that the three mappings F3 ,
F5 , F7 have a zero eigenvalue and project vectors in R3 along the direction

_
0
1

&2& , _
1
0

&1& , _
&2

1
0 & . These projection induce a tree structure for the

invariant set. The maps send their domain of continuity onto the segments:

0 0

a={X # R3 } X=* ._3�4&+(1&*) ._1& , * # [0, 1]=1�2 1

1�2 1

b={X # R3 } X=* ._ 0 &+(1&*) ._0& , * # [0, 1]=1�2 1

1�2 1

c={X # R3 } X=* ._3�4&+(1&*) ._0& , * # [0, 1]=0 0
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We can generate the invariant set by starting with the set: a _ b _ c.
We show in Fig. 1 the initial branches a, b, c and their image under the five
first iterates of the IFS. We have labeled the branches of the tree by their
corresponding coding, for the three first iterates. One see, then how the tree
structure is generated.

3. One-Dimensional Case where Ec # ](1+=)�(1&=), 2�
(1&=)]. This case is very atypical in the sense that the attractor is a
finite set of points whose components have values (1+=)�(1&=). Indeed,
let I be the set where each site has energy X=(1+=)�(1&=) but at most
one with energy (2 .=)�(1&=). For Ec # ](1+=)�(1&=), 2�(1&=)] the set I

is the unique invariant set. Moreover, \B # M, Tn(B) � I, in the
Haussdorf metric. Note that in this case we do not have invertibility, but
each point has exactly N preimages.

This behaviour is somehow pathological as it exists only in this range
of Ec value. For higher dimensions, we still do not know if there can be
such an atomic invariant set.

B. The Probability Distribution of Avalanche Size

In this part we derive a relation linking the sum of Lyapunov
exponents and the probability of avalanche size. Then, we relate the fractal
structure of the attractor to the critical exponent values. The basic
ingredient is the Ledrappier�Young formula. However, as already said, the
existence of a kernel in the standard Zhang model makes the analysis
somehow cumbersome. We therefore discuss first the non kernel case
(={0) and comment only briefly on the modifications necessary to handle
the limiting case ==0.

1. Average Contraction Rate. The key result is an exact for-
mula linking the determinant of the basic maps to the total number s of
overcritical sites in the corresponding avalanche. Namely we prove the
following:

Proposition 4. For T k
a # Ks one has

det Lk
a==s (21)

Proof. We first show a property about the relative distance of the
overcritical sites in an avalanche. Let the avalanche be given by
A=[Ak]0�k�n where Ak is the set of overcritical sites at the k th step in
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File: 822J 245119 . By:XX . Date:01:12:99 . Time:08:26 LOP8M. V8.B. Page 01:01
Codes: 778 Signs: 373 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Five first steps of iteration of the Iterated Function System, for Ec=1, N=3, ==0.
The labeling of the branches of the tree, is a sequence, read from the left to the right, indicat-
ing the sequence of mappings applied to one of the initial branch a, b, c (right most symbol).
The last picture is the plot of a trajectory on the attractor.
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Fig. 1. (Continued)
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Fig. 1. (Continued)
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the avalanche A. Denote by D(Ak)=[d(i, j) : i, j # Ak] the set of pairwise
distances of the vertex set Ak . The proof is a straightforward consequence
of the following lemma.

Lemma 1. For any Zd sublattice 4, D(Ak)/2.N O D(Ak+1)/2.N.

Let #(i, j) denotes any path from i to j with no repetition of edges and
|#| its length. From the general properties of subsets of Zd it follows that
d(i, j) # 2 .N O |#(i, j)| # 2 .N and, vice versa, if |#(i, j)| # 2 .N for some #
then d(i, j) # 2 .N. Let |Ak |, |Ak+1|�2 and i, j # Ak . We will show below,
that provided = is sufficiently small, no site can be overcritical for two suc-
cessive time steps. Assuming this for the moment, it follows that Ak+1/
B(Ak , 1)=[v # 4 : d(v, Ak)=1] since no site of Ak can be overcritical in
the next step. Fix a path #* by eliminating the first and last edge of #/Ak .
#* is a path between a vertex in B(i, 1) and B( j, 1), of length |#&2|. Since
the pairwise distance in B(v, 1) are even for any vertex v # 4 it follows that
for any pair of vertices from B(i, 1) to B( j, 1) there is an even length
extension of #* connecting those two vertices. This proves the lemma.

We now show that, provided = is sufficiently small, a site cannot be
overcritical in two successive time steps. For ==0 this is obvious. Assume
now that =>0. Let E� k be the maximal energy value of an overcritical site
in the kth step of an avalanche. For a given = we have to show that
= .E� k<Ec , \k. Clearly, E� 0<Ec+1. It is obvious that the maximal increase
of energy on a site v can only happen if v has 2.d overcritical neighbours.
In that case we have the following estimation

E� k+1<(1&=) .E� k+Ec

Iterating this expression we obtain:

E� n<(1&=)n .E� 0+Ec . :
n&1

i=0

(1&=) i=(1&=)n .E� 0+Ec .
1&(1&=)n

=

which has to be less than Ec�=. This holds provided:

Ec>
=

1&=
(22)

It follows from the lemma that two neighbours cannot be
simultaneously overcritical during one avalanche provided = sufficiently
small. One then gets the expression for the determinant by decomposing
the matrix of the avalanche into one step matrices. The row corresponding
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to any overcritical site as only one non zero entry, the diagonal element =
(nothing comes from the other overcritical sites at this time) while the
columns corresponding to a non overcritical site has only one non zero
entry, the diagonal element 1. Formula (21) follows. K

By using the ergodic theorem we get the log-average volume contrac-
tion which is also the sum of Lyapunov exponents as:

:
i

*&
i =log = . :

SN

s=1

sPN(s)=log = .s� (23)

where s� is the average avalanche size and sN the maximal avalanche size.
The formula relates the local volume contraction to the average avalanche
size. It connects therefore microscopic dynamical quantities (Lyapunov
exponents) to a macroscopic observable (average avalanche size). In par-
ticular it allows to establish a link between the Lyapunov spectrum and the
critical exponents of the avalanche size distribution (see below and ref. 9).

2. Contraction Versus Expansion. The average contraction
rate decreases with increasing Ec . Indeed, the larger Ec , the larger is the
frequency of occurrence of ``trivial'' avalanches where no relaxation occurs.
They only display neutral directions in the phase space, with no contrac-
tion, and no contribution to the negative Lyapunov exponent. This can
also be seen on formula (21): the larger Ec , the smaller the average
avalanche size. Therefore, for fixed N, there exists an E c*(N ) which is the
unique Ec value such that:

log = .s� +log(N )=0 (24)

For Ec<E c*(N ) the contraction dominates the expansion, while it is
the opposite for Ec>E c*(N ). Clearly, the invariant set structure is different
in these two cases. On the one hand, for small Ec values, the images of the
domains Pk

a are thin bands which are stretched slower than they contract.
Therefore, they are expected not to overlap asymptotically and the
invariant set has a Cantor structure with large gaps. On the other hand,
when Ec>E c*(N ), the successive images of the domains Pk

a fill more and
more the phase space and the properties in Conjecture 1 and 4 should not
hold.

Note that, in this scheme, the Haussdorf dimension of A increases for
increasing Ec , Ec<E c*(N ) and is likely to be constant when Ec>E c*(N ).

The graph of E c*(N ) can easily be computed numerically. We give an
example below, in a square lattice, for various values of = (Fig. 2). Note
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Fig. 2. En*(N ) for various values of =. L is here the linear dimension of 4 (N=L2).

that Ec*(N ) increases with N. Therefore, one expects that, Conjecture 1�4
hold on larger and larger range of Ec values, as N increases.

3. Bounds on the Critical Exponent. In the invertible case the
Ledrappier�Young formula implies:

:
N

i=1

|*i |�log N (25)

Therefore, from formula (23):

:
sN

s=1

sPN(s)�
log N
|log =|

(26)

This implies that the average avalanche size, s� , has to diverge when N
goes to infinity and that, in the thermodynamic limit, PN(s) tends to a
distribution with an infinite mean-value.

Furthermore, a reasonable assumption (supported by experiments) is
that, for fixed N, the probability decreases with the avalanche size, namely:

\N�N(=), PN(s)�PN(s+1) (27)
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In a certain way, this behaviour could be expected since the larger the
avalanche, the more one has to impose conditions defining the corre-
sponding domain of continuity, and the less the corresponding volume.
However, this argument is not completely correct in general since one
assumes some kind of absolute continuity of the invariant measure on the
stable foliation (the probability of a domain decreases with its volume). In
particular it is completely false for Ec>1 in the one dimensional chain,
here the probability increases with s.

Assuming that there is indeed a power law, and that the system is
invertible then one obtains:

PN(s)=
fN(s)

s{ , 1<{�2 (28)

where fN(s) is a cut-off function accounting for finite size effects.11

Therefore, Eq. (26) gives the scaling of the power law and bounds for
the critical exponent {. In particular, if we assume that PN(s) converges to
some limit P*(s) as N � +�, then P*(s)=c�s{, { # [1, 2].

4. The Value of { and the Fractality of the Support of the
Invariant Measure. The Ledrappier�Young formula gives a direct way
to check the ``fractality'' of the support of the invariant measure in the
invertible case for

}:i

*&
i }>log N (29)

if some partial dimensions _i are not integers (<mi ).
Suppose that the measure + is absolutely continuous on the stable

foliation. Then from Eq. (17) we get equality in (26), implying that the sum
diverges logarithmically with N. Furthermore, the maximal avalanche size
scales like sNrN ;�2, implying that log sNrlog N. Then s� diverges loga-
rithmically with sN suggesting a critical exponent {=2. More generally, we
get the same result if the fractal set is homogeneous (in sense that all
partial Haussdorf dimensions are equal or can be bounded from below as
N � �).

However, one does not expect the fractal to be homogeneous. It is
indeed clear that the contraction is not uniform in the phase space. For
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effects. The exponents ({, ;) are believed to characterize the universality class of the model.
Note that {, ; depend a priori from Ec . (21)
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==0 the kernel directions produce infinite contraction. In Fig. 1 they are
the directions transverse to the ``branches'' of the attractor, which project
the dynamics on the tree, in one time step. On the other hand, the direc-
tions ``parallel'' to the branches produce finite contraction. As a corollary,
the partial Haussdorf dimensions of the invariant set are zero transversally
to the attractor while they are finite along the branches. When = is small,
there are still directions producing high contractions, those which give the
kernel directions as = � 0. This effect is reflected in the Lyapunov spectrum
where one detects two parts in the spectrum (see Fig. 3).

Therefore, the sum (resp. s� ) must diverge faster than logarithmically
with N and strict inequality holds. This implies that the critical exponent
{<2. The measured exponent is indeed always strictly lower than 2.(21)

Note that under the finite size scaling hypothesis s� behaves as N 1&({�2) and
that { is indeed lower than 2 iff strict inequality holds in (26).

An explicit formula linking the Haussdorf dimension and the critical
exponent ({, ;) can be obtained through the Ledrappier�Young formula.
This will be treated in a separated paper.(9)

5. The Case ==0. One would like to obtain an equality like (26)
also in this case. However, setting ==0 leads to a zero determinant an
hence infinite Lyapunov exponents (more precisely the Lyapunov exponents

Fig. 3. Spectrum of negative Lyapunov exponents for N=49, Ec=3, ==0.1.
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are not defined on the whole configuration space). But restricted to Es(X� )
one can still compute finite Lyapunov exponents and the sum is just the
determinant of the matrix restricted to the stable space Es(X� ) at some point
X� in the domain of the map.

If one has a further inequality like:

det(T k
a |Es(X� ))�C s (30)

\K # Ks and 0<C<1 one still gets the same kind of estimates for the
expected avalanche size like in the ={0 case. The details are quite cumber-
some and will be given in a forthcoming paper.

C. Phase Transitions

The domains of continuity Mk
a are bounded by hyperplanes, which are

moving when Ec varies. In general, a small variation in Ec does not lead to
structural changes in the dynamics, if all these hyperplanes are intersecting
the interior of M. In this case, the structure of the transition graph is not
modified. Moreover, the corresponding mapping T k

a does not change under
this motion. More precisely, changes in Ec just change the shape of Mk

a but
not the matrix of the mapping T k

a .
However, for some Ec values, some hyperplanes have intersection only

with �M. This implies that a small change in Ec can push these hyperplanes
outside M. Hence the corresponding transition graph changes in structure.
As far as the asymptotic dynamics and therefore, the invariant distribution
is dependent on the graph structure, we expect changes in the SOC picture
when crossing these critical Ec values. This effect has already been reported
elsewhere for the one dimensional Zhang model(7) and arises also in two
dimensions where PN(s) is not a power law for Ec<<1.(9)

In fact, one can easily figure out that at least the limiting cases Ec � �
and Ec � 0 are completely different. For Ec � � relaxation events are
more and more seldom. One obtains kind of frozen state where energy
increases (on average) monotonously with some rare (but large)
avalanches. Moreover, the asymptotic energy distribution is sensitive to the
initial conditions (loss of ergodicity). Furthermore, the attractor as a large
Haussdorf dimension.

On the other hand, for Ec � 0, each activation generates a very large
avalanche (that has to reflect many times on the boundary before it has
lost enough energy to stop). This implies larger and larger contraction, and
therefore the sum of Lyapunov exponents decreases to &�. As a corollary
of Ledrappier�Young formula the partial fractal dimensions have to go to
zero in order to maintain the product equal to log N.
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IV. CONCLUSION

We have shown that certain classes of models of SOC like the Zhang
model fit naturally into a well known class of dynamical systems. Especially
for the question of asymptotic energy distribution, observables distribution,
ergodicity, this seems to be a proper point of view. Furthermore it seems
likely to exhibit close relationship between the probability of the size of
avalanches and the fractality of the attractor.

There are many questions for further investigations. We list a few of
them.

1. Development of a thermodynamic formalism and it's linkage to
the SOC quantities. It should be possible to extrapolate this formalism to
the case of arbitrary (hyperbolic) SOC-system. Moreover, phase transitions
should correspond to changes in the invariant measure of maximal entropy
(loss of analyticity of the topological pressure). One expects that in a
proper formulation Ec should play the role of an inverse temperature.

2. Dimension spectrum of the attractor and Lyapunov spectrum. We
have outlined above the crucial role played by Lyapunov exponents
(accounting for energy transport) and the link one can establish with the
equilibrium state and the critical exponents. The full developments of this
point will be published elsewhere.(9)

3. Nonuniform distribution rules. As outlined in the paper most of
our results carry on if one does not choose a uniform activation measure,
because one still has a good measure as an equilibrium state. On the other
hand, activating with a degenerate probability distribution (for example
activating always the same site) will lead to different results. Activating
sites periodically with different period will allow to sample the periodic
orbits structure of the global attractor, which are dense.

4. Thermodynamic limit for fixed Ec and N � � and the limit
Ec � � (N fixed). In these both cases one loses the hyperbolic structure.

5. Smooth thresholds. Some modification of Zhang model have been
proposed, in particular to treat this model in the continuum limit by an
anomalous diffusion equation.(13, 4) In this case the Heaviside function
corresponding to the sharp threshold at Ec is smoothed out by some con-
tinuous function. The nice effect of this change in our description is that it
removes the singularity set. On the other hand, the system is expected to
have still a nice hyperbolic structure (though non uniform) where smooth
local stable manifolds exist for almost all points. Pesin theory(22) should
apply in this context.

6. The case where $X is random. In the usual Zhang model, the
energy activation quantum $X is not a constant but is a random variable.
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This situation can be treated in the framework of random hyperbolic
dynamical system.

As a conclusion we would like to outline that the study of SOC-
models with tools from dynamical system theory will certainly not solve all
questions in this context. In the belief of the authors it is mainly useful for
the study of fairly general structure properties of the models. It is also clear
that the complexity of the underlying transition graph on which the model
is defined will become of crucial importance for some questions.
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